# A NEW INHIBITOR OF PROTEIN KINASE C, RK-1409B (4'-DEMETHYLAMINO-4'-HYDROXY-3'-EPISTAUROSPORINE)

## HIROYUKI KOSHINO, HIROYUKI OSADA, SHUICHI AMANO, RIE ONOSE and Kiyoshi Isono<sup>†</sup>

Antibiotics Laboratory, RIKEN, The Institute of Physical and Chemical Research, Wako, Saitama 351-01, Japan

(Received for publication February 22, 1992)

RK-1409B, a new inhibitor of protein kinase C, was isolated from the culture broth of *Streptomyces platensis* subsp. *malvinus* RK-1409. The structure was elucidated on the basis of spectroscopic analyses. RK-1409B inhibited protein kinase C *in vitro* and the morphological change of a human chronic leukemia cell line, K-562, induced by phorbol 12,13-dibutyrate with IC<sub>50</sub> value of  $0.4 \,\mu$ M.

Protein kinase C (PKC) has a crucial role in signal transduction, cellular regulation, proliferation, and tumor promotion<sup>1,2)</sup>. Specific inhibitors of PKC were expected to be excellent tools for understanding the roles of PKC. Previously, we reported the PKC inhibitors, sangivamycin<sup>3)</sup>, RK-286C<sup>4)</sup>, RK-286D<sup>5)</sup>, and RK-1409 (7-oxostaurosporine)<sup>6,7)</sup> by using a convenient assay system for PKC inhibitors, named bleb forming assay<sup>8)</sup>. This assay is based on the morphological change of a human chronic leukemia cell line K-562. We found that *Streptomyces platensis* subsp. *malvinus* RK-1409, the RK-1409 (7-oxostaurosporine)-producing strain<sup>6)</sup>, produced an additional novel inhibitor of PKC, RK-1409B. In this paper, we report isolation, physico-chemical properties, structural elucidation and biological activities of the novel indolocarbazole antibiotic RK-1409B.

#### Experimental

### General

MP was measured with a Yanaco micro melting point apparatus. Optical rotation and CD spectrum were measured by a Perkin-Elmer 241MC polari-

meter and a Jasco J-20A spectropolarimeter, respectively. UV and IR spectra were taken on a Hitachi 220A spectrometer and a Shimadzu IR27G recording IR spectrometer, respectively. EI-MS spectra were obtained with a Hitachi M-80 mass spectrometer. NMR spectra were recorded on a Jeol GX-400 and GSX-500 spectrometers.

## Fermentation

Streptomyces platensis subsp. malvinus RK-1409 was cultured in two 500-ml cylindrical flasks containing 140 ml of seed medium (glucose 2%, soluble starch 1%, soybean meal 2.5%, dried yeast 0.4%, meat extract 0.1%, NaCl 0.2%,  $K_2$ HPO<sub>4</sub>



Fig. 1. Structure of RK-1409B.

<sup>†</sup> Present address: Department of Marine Science, School of Marine Science and Technology, Tokai University, 3-20-1 Orido, Shimizu, Shizuoka 424, Japan.

0.005%, adjusted to pH 7.2). The fermentation was carried out on a rotary shaker (210 rpm) at 28°C for 48 hours. The culture was transferred to a 30-liter jar fermenter containing 18 liters of the same medium. The fermentation was carried out at 28°C with aeration of 10 liters/minute and agitation of 450 rpm for 24 hours. The seed culture was transferred to a 600-liter tank fermenter containing 400 liters of a modified medium (glucose 2%, soluble starch 3%, soybean meal 2.5%, dried yeast 0.4%, NaCl 0.2%,  $K_2HPO_4$  0.005%, CaCO<sub>3</sub> 0.4%, adjusted to pH 7.2). The fermentation for production was carried out at 28°C with aeration of 200 liters/minute and agitation of 240 rpm for 114 hours.

## Isolation and Purification

The whole broth (370 liters) was filtered and the mycelial cake (125 kg) was extracted with 90% acetone (400 liters). The acetone extract was concentrated *in vacuo*, and then extracted with ethyl acetate (200 liters). The ethyl acetate extract (450 g) was applied to a silica gel (1 kg) column chromatography (12 i.d.  $\times$  20 cm). After eluting with *n*-hexane (20 liters) and CH<sub>2</sub>Cl<sub>2</sub> (2 liters), the column was eluted with MeOH-CH<sub>2</sub>Cl<sub>2</sub> (1:99, 10 liters) to give an active fraction (14.8 g). This fraction was crystallized from MeOH and subsequently from MeCN to obtain crude staurosporine powder and a filtrate. The filtrate was evaporated to dryness and the residue (6.0 g) was applied to a Sephadex LH-20 column chromatography with methanol followed by reverse phase HPLC to yield 33 mg of RK-1409B. HPLC conditions were as follows; column: Capcell Pak type C<sub>18</sub> (20 i.d.  $\times$  250 mm, Shiseido, Tokyo), solvent system: 80% MeOH containing 0.01% NH<sub>4</sub>OH, flow rate: 5.0 ml/minute, UV detection at 290 nm.

Bleb Forming Assay and Inhibition of Protein Kinase C

The bleb forming assay utilizing K-562 human leukemia cells was described in previous papers<sup>3,8)</sup>. Inhibition of protein kinase C was assayed by the bovine brain protein kinase C assay kit (Amersham).

#### **Results and Discussion**

#### **Physico-chemical Properties**

RK-1409B was obtained as a pale yellow powder, mp >260°C (dec),  $[\alpha]_D^{22} + 147^\circ$  (*c* 0.2, DMSO). The molecular formula of RK-1409B was determined as  $C_{27}H_{23}N_3O_4$  based on HREI-MS data (M<sup>+</sup> *m/z*: 453.1672, calcd: 453.1687). RK-1409B was soluble in DMSO and slightly soluble in MeOH, EtOAc, CHCl<sub>3</sub> and acetone, but insoluble in *n*-hexane and water. In the IR spectrum, absorption bands were observed at  $v_{max}^{KBr}$  3350, 2950, 1670, 1580, 1450, 1380, 1340, 1305, 1270, 1225, 1095 and 735 cm<sup>-1</sup>. The UV spectrum is shown in Fig. 2;  $\lambda_{max}^{MeOH}$  nm ( $\varepsilon$ ): 203 (37,870), 237 (sh, 24,460), 245 (25,370), 267 (sh, 26,270), 293 (58,710), 320 (sh, 10,420), 336 (13,140), 357 (9,970) and 374 (10,870).

#### Structural Elucidation

The UV spectrum of RK-1409B suggested the presence of an indolo[2,3-*a*]pyrrolo[3,4-*c*]carbazole-5(6*H*)-one system as chromophore<sup>9~12)</sup>. The molecular formula of RK-1409B,  $C_{27}H_{23}N_3O_4$ , was the same as that of RK-286C<sup>12)</sup>. The UV and IR spectra of RK-1409B were indistinguishable from those of RK-286C. The <sup>1</sup>H NMR and <sup>13</sup>C NMR data of RK-1409B were summarized in Tables 1 and 2 and compared with those of RK-286C. Comparison of NMR data revealed the presence of the same indolocarbazole chromophore. Some differences were observed in the chemical shifts for sugar





## THE JOURNAL OF ANTIBIOTICS

| D (     | Chemical shifts <sup>a</sup> (J in Hz) |                             |                             |  |
|---------|----------------------------------------|-----------------------------|-----------------------------|--|
| Protons | RK-1409B <sup>b</sup>                  | RK-1409B°                   | RK-286C <sup>c,d</sup>      |  |
| 1-H     | 7.38 (d, 7.9)                          | 7.66 (d, 7.9)               | 7.59 (d, 8.1)               |  |
| 2-H     | 7.48 (dd, 7.9, 7.3)                    | 7.47 (dd, 7.9, 7.3)         | 7.46 (dd, 8.1, 7.6)         |  |
| 3-H     | 7.33 (dd, 7.3, 7.3)                    | 7.27 (dd, 7.9, 7.3)         | 7.28 (dd, 7.6, 7.6)         |  |
| 4-H     | 9.26 (d, 7.3)                          | 9.24 (d, 7.9)               | 9.30 (d, 7.6)               |  |
| 6-H     |                                        | 8.51 (s)                    | 8.45 (s)                    |  |
| 7-H     | 4.91 (d, 17.1),                        | 4.94 (d, 16.5),             | 4.89 (d, 16.8),             |  |
|         | 4.97 (d, 17.1)                         | 4.98 (d, 16.5)              | 4.97 (d, 16.8)              |  |
| 8-H     | 7.93 (d, 7.3)                          | 8.06 (d, 7.9)               | 7.95 (d, 7.5)               |  |
| 9-H     | 7.36 (dd, 7.3, 7.3)                    | 7.37 (dd, 7.9, 7.3)         | 7.27 (dd, 7.6, 7.5)         |  |
| 10-H    | 7.49 (dd, 7.3, 7.3)                    | 7.53 (dd, 7.3, 7.3)         | 7.41 (dd, 7.6, 7.6)         |  |
| 11-H    | 7.69 (d, 7.3)                          | 7.86 (d, 7.3)               | 7.99 (d, 7.6)               |  |
| 2'-Me   | 2.13 (s)                               | 2.08 (s)                    | 2.32 (s)                    |  |
| 3'-H    | 4.09 (d, 5.5)                          | 3.97 (d, 4.3)               | 3.84 (d, 3.8)               |  |
| 3'-OMe  | 3.74 (s)                               | 3.69 (s)                    | 3.42 (s)                    |  |
| 4'-H    | 4.21 (ddd, 7.3, 5.5, 4.3)              | 4.07 (ddd, 5.5, 4.3, 4.3)   | 4.27 (m)                    |  |
| 4′-OH   | _                                      | 4.63 (br s)                 | 4.17 (d, 3.6)               |  |
| 5'-H    | 2.21 (ddd, 14.0, 7.3, 4.9),            | 2.03 (ddd, 14.0, 5.5, 4.3), | 2.14 (ddd, 15.0, 3.6, 1.0), |  |
|         | 2.71 (ddd, 14.0, 6.7, 4.3)             | 2.63 (ddd, 14.0, 5.5, 3.7)  | 2.61 (ddd, 15.0, 5.1, 3.2)  |  |
| 6'-H    | 6.65 (dd, 6.7, 4.9)                    | 6.88 (dd, 6.1, 3.7)         | 6.77 (dd, 5.1, 1.0)         |  |

Table 1. <sup>1</sup>H NMR data of RK-1409B and RK-286C.

<sup>a</sup> Chemical shifts in ppm from TMS as an internal standard.

<sup>b</sup> CDCl<sub>3</sub>-CD<sub>3</sub>OD (1:9) as solvent.

<sup>c</sup> DMSO- $d_6$  as solvent.

<sup>d</sup> Data from ref 12.

| Carbons | Chemical shifts <sup>a</sup> |                        |         | Chemical shifts <sup>a</sup> |                        |
|---------|------------------------------|------------------------|---------|------------------------------|------------------------|
|         | RK-1409B <sup>b</sup>        | RK-286C <sup>c,d</sup> | Carbons | RK-1409B <sup>b</sup>        | RK-286C <sup>e,d</sup> |
| C-1     | 107.4                        | 108.5                  | C-10    | 124.7                        | 124.1                  |
| C-2     | 125.3                        | 124.7                  | C-11    | 112.2                        | 115.7                  |
| C-3     | 119.7                        | 118.9                  | C-11a   | 138.0                        | 139.7                  |
| C-4     | 126.1                        | 125.5                  | C-12a   | 129.3                        | 129.5                  |
| C-4a    | 123.1                        | 122.6                  | C-12b   | 125.7                        | 126.2                  |
| C-4b    | 115.8                        | 113.5                  | C-13a   | 136.8                        | 136.1                  |
| C-4c    | 118.5                        | 118.6                  | C-2'    | 94.0                         | 90.9                   |
| C-5     | 173.8                        | 172.2                  | C-3′    | 82.3                         | 82.3                   |
| C-7     | 45.8                         | 45.4                   | C-4′    | 65.1                         | 58.8                   |
| C-7a    | 132.7                        | 132.0                  | C-5′    | 32.4                         | 29.0                   |
| C-7b    | 114.1                        | 114.0                  | C-6′    | 80.0                         | 79.5                   |
| C-7c    | 124.7                        | 123.9                  | 2'-Me   | 25.4                         | 29.8                   |
| C-8     | 121.3                        | 120.6                  | 3'-OMe  | 59.8                         | 56.5                   |
| C-9     | 120.3                        | 119.6                  |         |                              |                        |

| Table 2. <sup>13</sup> C NM | R data of | RK-1409B | and RK-286C |
|-----------------------------|-----------|----------|-------------|
|-----------------------------|-----------|----------|-------------|

<sup>a</sup> Chemical shifts in ppm from TMS as an internal standard.

<sup>b</sup> CDCl<sub>3</sub>-CD<sub>3</sub>OD (1:9) as solvent.

° DMSO- $d_6$  as solvent.

<sup>d</sup> Data from ref 12.

moieties signals. In the <sup>1</sup>H NMR spectrum of RK-1409B, 3'-H, 3'-OMe and 6'-H signals were observed at lower field and 2'-Me, 4'-H and one of 5'-H signals were observed at upper field than those of RK-286C. These data indicated that RK-1409B is a stereoisomer of RK-286C. The <sup>1</sup>H and <sup>13</sup>C NMR assignments

Fig. 3. <sup>1</sup>H-<sup>13</sup>C Long range coupling observed in HMBC spectrum of RK-1409B.



of RK-1409B were established by spin decoupling experiments and <sup>1</sup>H-<sup>13</sup>C COSY. In HMBC experiments (Fig. 3), long range couplings from anomeric proton 6'-H ( $\delta$  6.65 ppm) to a hydroxymethine carbon C-4' ( $\delta$  65.1 ppm) and two quaternary carbons C-12b ( $\delta$  125.7 ppm) and C-2' ( $\delta$  94.0 ppm). Methyl group at  $\delta$  2.13 ppm was assigned to 2'-Me by long range coupling to C-2'. Observation of correlation peaks between methoxy group ( $\delta_{\rm H}$  3.74 and  $\delta_{\rm C}$  59.8 ppm) and oxygenated methine ( $\delta_{\rm H}$  4.09 and  $\delta_{\rm C}$  82.3 ppm) confirmed



Table 3. Inhibitory activities against bleb formation of K-562 cells and PKC *in vitro*.

|               | IC <sub>50</sub> (µм) |                   |
|---------------|-----------------------|-------------------|
|               | Bleb<br>suppression   | PKC<br>inhibition |
| RK-1409B      | 0.4                   | 0.4               |
| RK-286C       | 0.3                   | 0.04              |
| Staurosporine | 0.002                 | 0.002             |

that the bonding position of methoxy group was C-3'. Connectivity of sugar moiety and aglycone was confirmed by NOE difference spectra. Irradiation of 11-H enhanced the intensity of 2'-Me and 3'-H. And NOEs between 1-H and 6'-H was also observed. These NOE data confirmed the attachment of C-2' to N-12 and C-6' to N-13. These data suggested that the planar structure of RK-1409B was the same as RK-286C.

Relative stereochemistry of the hydroxyl group at C-4' was determined to axial by small coupling constants of 4'-H,  $J_{3',4'}=4.3$  Hz,  $J_{4',5a'}=5.5$  Hz and  $J_{4',5b'}=4.3$  Hz. This evidence suggested that RK-1409B and RK-286C were epimers at C-3' position. Axial orientation of the methoxy group at C-3' was supported by observed NOE between 11-H and 3'-H. Absolute stereochemistry was determined by CD spectrum (Fig. 4). CD spectra of RK-1409B, RK-286C and staurosporine exhibited quite similar curves, and indicated that absolute stereochemistry at C-2' and C-6' were the same in those three compounds<sup>12</sup>). Using the above mentioned spectral data, the structure of RK-1409B was determined to 4'-demethylamino-4'-hydroxy-3'-epistaurosporine, which is a stereoisomer at C-3' of RK-286C.

## **Biological Activity**

Inhibitory activity of RK-1409B against protein kinase C and bleb formation induced by phorbol 12,13-dibutyrate (PDBu) were directly compared with that of RK-286C and staurosporine (Table 3). RK-1409B showed similar inhibitory activity as RK-286C on the bleb formation induced with PDBu. RK-1409B showed weaker inhibitory activity as compared to RK-286C with respect to *in vitro* PKC inhibition. In this paper, *in vitro* PKC activity was measured by PKC assay kit obtained from Amersham,

Fig. 4. CD spectrum of RK-1409B (in MeOH).

#### THE JOURNAL OF ANTIBIOTICS

which contains bovine brain PKC and the synthetic peptide as the substrate. In previous papers<sup>3,4)</sup>, PKC from rabbit brain and type III histone were used. According to the difference of bioassay systems,  $IC_{50}$  value of RK-286C in this paper was different from that in a previous paper<sup>4)</sup>. However, the order in activity is the same; staurosporine is the strongest among the three compounds. RK-1409B also inhibited the cell cycle progression at G<sub>2</sub> phase with polyploid DNA as same as RK-286C (data not shown). From the viewpoint of structure-activity relationships, the stereochemistry of the methoxy group at C-3' is important and the equatorial orientation of the methoxy group is more effective than the axial orientation for inhibition of PKC.

RK-1409B showed weak antifungal activity similar to that of RK-286C. RK-1409B inhibited the growth of *Pyricularia oryzae* IFO 5994 at the concentration of  $40 \mu g/disk$ , and no antimicrobial activity was observed among the other strains tested at this concentration (data not shown).

#### Acknowledgments

We are grateful to Dr. J. UZAWA for NMR measurements and Mr. Y. ESUMI and Ms. Y. ITOH for MS measurements. This work was carried out as a part of the Biodesign Project Research in RIKEN, and supported in part by a Grant-in-Aid for Cancer Research from the Ministry of a Education, Science and Culture, Japan. HK is a Special Researcher of Basic Science Program supported by Science and Technology Agency, Japan.

#### References

- NISHIZUKA, Y.: The role of protein kinase C in cell surface signal transduction and tumor promotion. Nature 308: 693~698, 1984
- 2) NISHIZUKA, Y.: Turnover of inositol phospholipids and signal transduction. Science 225: 1365~1370, 1984
- OSADA, H.; T. SONODA, K. TSUNODA & K. ISONO: A new biological role of sangivamycin; inhibition of protein kinases. J. Antibiotics 42: 102~106, 1989
- OSADA, H.; H. TAKAHASHI, K. TSUNODA, H. KUSAKABE & K. ISONO: A new inhibitor of protein kinase C, RK-286C (4'-demethylamino-4'-hydroxystaurosporine). I. Screening, taxonomy, fermentation and biological activity. J. Antibiotics 43: 163~167, 1990
- OSADA, H.; M. SATAKE, H. KOSHINO, R. ONOSE & K. ISONO: A new indolocarbazole antibiotic, RK-286D. J. Antibiotics 45: 278 ~ 279, 1992
- OSADA, H.; H. KOSHINO, T. KUDO, R. ONOSE & K. ISONO: A new inhibitor of protein kinase C, RK-1409 (7-oxostaurosporine). I. Taxonomy and biological activity. J. Antibiotics 45: 189~194, 1992
- KOSHINO, H.; H. OSADA & K. ISONO: A new inhibitor of protein kinase C, RK-1409 (7-oxostaurosporine). II. Fermentation, isolation, physico-chemical properties and structure. J. Antibiotics 45: 195~198, 1992
- OSADA, H.; J. MAGAE, C. WATANABE & K. ISONO: Rapid screening method for inhibitors of protein kinase C. J. Antibiotics 41: 925~931, 1988
- 9) ŌMURA, S.; Y. IWAI, A. HIRANO, A. NAKAGAWA, J. AWAYA, H. TSUCHIYA, Y. TAKAHASHI & R. MASUMA: A new alkaloid AM-2282 of *Streptomyces* origin. Taxonomy, fermentation, isolation and preliminary characterization. J. Antibiotics 30: 275~282, 1977
- YASUZAWA, T.; T. IIDA, M. YOSHIDA, N. HIRAYAMA, M. TAKAHASHI, K. SHIRAHATA & H. SANO: The structures of the novel protein kinase C inhibitors K-252a, b, c and d. J. Antibiotics 39: 1072~1078, 1986
- TANIDA, S.; M. TAKIZAWA, T. TAKAHASHI, S. TSUBOTANI & S. HARADA: TAN-999 and TAN-1030A, new indolocarbazole alkaloids with macrophage-activating properties. J. Antibiotics 42: 1619~1630, 1989
- TAKAHASHI, H.; H. OSADA, M. URAMOTO & K. ISONO: A new inhibitor of protein kinase C, RK-286C (4'-demethylamino-4'-hydroxystaurosporine). II. Isolation, physico-chemical properties and structure. J. Antibiotics 43: 168~173, 1990